Search
Generic filters
Exact matches only
Filter by Categories
Ant Information
Cockroach Bait
Cockroach Biology
Cockroach Control
Cockroach identification
Cockroach Information
Cockroach Spray
Cockroach Traps
Latest News - E-News
Latest News - General
Latest News - Magazine
MEDIA
All
Pest ID
PPM Magazine
PPM Pest E-News
Scientific Papers
Termite Professional magazine
Termite Professional Magazine - Asean
Termite Professional Magazine - Australia
Videos
Open to the Public
Pest Pulse
Premium Blogs
Spider Information
Termite Information
Wasp Information
Filter by content type
Taxonomy terms

TERMITE SOIL TREATMENTS

Liquid soil treatments remain a popular method for creating a protective perimeter around a property, with new research testing their effectiveness in extreme weather conditions.

Effect of temperature on termiticide degradation

The longevity of termiticides in soil is a key factor that determines their success in providing buildings with longterm protection from termite attack. The persistence of a termiticide in soil is determined by the intrinsic properties of the termiticide such as its stability to UV, hydrolysis and microbial breakdown, water solubility and soil-binding characteristics. Soil characteristics including pH, organic content, clay/sand composition and microbial content also play a role, as do environmental factors such as rainfall and temperature.

Establishing the half-life of a termiticide – the time taken for its concentration in the soil to be reduced by 50% – is a key measure in determining the required initial dose. The reported half-life for the common termiticides will often vary greatly depending on the methodology, in particular the soil used and the temperature at which the assessment has been carried out. Researchers in Malaysia have recently completed a half-life study on three common termiticides, which according to the researchers, is the first published data on these termiticides in tropical soils under tropical conditions.1

Termiticides were mixed at a variety of concentrations and applied as a 100 ml mix into 1 kg of soil (either sandy loam or loamy sand) and placed in sealed plastic containers at either 30°C or 40°C. As is common with soil residue studies, variability makes it difficult to draw firm conclusions from the data; indeed in this study the researchers could not determine whether the soil type or temperature had an effect on termiticide half-life (although temperature is known to decrease half-life). One month after application, the researchers recorded a noticeable drop in the levels of termiticide. Imidacloprid show the biggest drop in concentration, followed by fipronil, with bifenthrin showing the least degradation. When calculated over the duration of the trial, the reported half-lives were: bifenthrin 69-166 days; fipronil 33-57 days; and imidacloprid 33-55 days.

A lot more data about the performance of termiticides under tropical conditions is required to form a comprehensive data set to draw firm conclusions. Whilst half-life data provides useful information on a termiticide, it does not necessarily mean the active with the longest half-life will make the best termiticide. However, data such as the half-life is taken into account when developing a product and arriving at an application rate. All other parameters being equal, a termiticide with a shorter half-life will need a higher initial application concentration than a termiticide with a longer half-life.

 

Flooding and soil termiticides

The impact of rainfall on soil-applied termiticides is a key consideration in choosing an appropriate product, or indeed deciding whether a soil-applied termiticide is a suitable treatment at all. What level of rainfall does the area typically receive? What is the soil type being treated? Is it a sloping block? Is the area close to a river? All of these questions come into sharper focus when a major rain event hits or during periods of flooding. What happens to the treatment and is a re-treatment necessary?

The behaviour of termiticides in soil is largely dependent on their intrinsic solubility in water, their ability to bind to the soil (KoC) and their stability (rate of hydrolysis). Looking into this in greater depth, researchers from Louisiana State University Agricultural Center in the US set out to investigate the impact of flooding on termiticide residues.2 Their study focused on four formulated termiticides based on fipronil, imidacloprid, chlorantraniliprole or bifenthrin as the active ingredient. Dosing both sand and soil substrates at 1, 10 and 25 ppm, the treated soils were allowed to fully dry for two days before being exposed to a flooding methodology for one week. Untreated sand and soil samples were exposed to the same regime. The substrate samples were then analysed for termiticide residues and also assessed for efficacy by introducing Coptotermes formosanus workers and soldiers to the substrates.

The results demonstrated that the residues of all the termiticides were reduced on flooding and that the reduction in termiticide residues was greater in sand than in soil for all the termiticides tested. This observation is consistent with previous studies that have indicated that the level of organic material in the soil has a significant influence on the rate of leaching; termiticides showed lower levels of leaching in soils with higher levels of organic content.

In ranking the termiticides, the authors concluded that imidacloprid was the most leachable insecticide, bifenthrin was the least leachable insecticide, and fipronil and chlorantraniliprole were somewhere in between. (Due to the lack of replications in the chemical analysis the authors were not comfortable in drawing more precise ranking conclusions.)

It is of course important to understand the efficacy of any treatment after a flooding event. In soil treatments in the study, although there was clearly a drop in the levels of each active, there was no difference in the level of mortality between flooded and un-flooded samples at all application rates for all actives, except the 1 ppm bifenthrin treatment where there was a significant drop in efficacy.

However, with the sand treatments, a number of significant drops in efficacy were recorded. Fipronil originally dosed at 1 ppm was no longer efficacious after flooding and imidacloprid showed significant reductions in efficacy at all doses. Interestingly, chlorantraniliprole showed significant increases in mortality at the 10 ppm and 25 ppm levels. The authors hypothesised that this increase may be due to increased bioavailability after flooding, noting that the mortality was lower in soil than in sand – suggesting that the organic content in soil impacts chlorantraniliprole efficacy. Bifenthrin showed no drop in efficacy in any of the treatment levels.

This particular study did not assess the impact of hydrolysis, which can also occur as a result of flooding. Fipronil, imidacloprid and chlorantraniliprole hydrolysis is high under basic conditions but these actives tend to be stable under acidic and neutral soil conditions.

The results of this study suggest that the more water-soluble termiticides are unlikely to provide protection after a flooding event, and that even the least soluble termiticides will have a reduced duration of protection.

The study provides a good understanding of what happens to the various chemicals under flood conditions, but the reality of making a decision of whether and when to re-treat after a flooding event is a little more complex. There is no way of knowing the actual level of active remaining in the soil without taking samples for chemical analysis. With the need to take numerous samples from around the site, the cost to do this is likely to be prohibitive. The other key issue with flooding that this trial does not address, is the reality that additional soil and silt is brought in with the flood water, thus creating an untreated zone on top of the treated zone.

In the event of a flood, liquid termiticide treatments will undoubtedly be compromised – so it’s necessary to discuss potential actions with your supplier and insurer. Pest managers must consider both sides of the insurance situation, for themselves and their customers. Home and contents insurance providers would generally accept a claim if the homeowner had flood cover selected and had a termite barrier in place. Insurance companies would consider the barrier as structural improvement – and it is in their best interest to ensure the home is protected.

Regarding any warranties that pest managers have offered their customers, it really is necessary to review each situation on its merit and get input from both the product supplier and insurer before recommending a course of action.


References

1 Rashid, M.F.M., Ab Majid, A.H., 2020. Effect of Different Temperatures on the Degradation Rate and Half-Life of Termiticides in Tropical Soils under Laboratory Condition. MALAYSIAN JOURNAL OF SOIL SCIENCE 24, 33–48.

2 Sapkota et al. (2020). Residual Effects of Termiticides on Mortality of Formosan Subterranean Termite (Isoptera: Rhinotermitidae) on Substrates Subjected to Flooding. Journal of Economic Entomology, 113 (1): 367-374.

Other recent magazine articles